Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Nurziana Ngah, Nabihah M. Shah, Mohammad B. Kassim and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.090$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(2S)-2-(3-Benzoylthioureido)-3-methylbutyric acid

The 3-methylbutyric acid and benzoyl fragments in the title compound, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, are cis and trans, respectively, with respect to the thiono group across the thiourea $\mathrm{C}-\mathrm{N}$ bonds. In the crystal structure the molecules are stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form zigzag chains parallel to the b axis.

Comment

The title compound, (I), is analogous to 3-(3-benzoylthioureido) propionic acid (Yusof \& Yamin, 2003), except that one of the substituents at the terminal N atom of the thiourea group is 3-methylbutyric acid derived from the reaction with L-valine. The molecule maintains its cis-trans configuration of the 3-methylbutyric acid and benzoyl fragments with respect to the $\mathrm{C}=\mathrm{S}$ bond across their $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$ bonds, respectively (Fig. 1). The bond lengths and angles are in normal ranges (Allen et al., 1987) and are in agreement with those of 3-(3-benzoylthioureido)propionic acid (Yusof \& Yamin, 2003). The phenyl fragment including the carbonyl group, (C1-C6)/C7/O1 [maximum deviation 0.065 (2) A for atom O1], and the central thiourea, S1/N1/N2/C8 [maximum deviation 0.034 (2) A for atom N2], are essentially coplanar, the dihedral angle being $3.94(11)^{\circ}$. The molecule is stabilized by weak intramolecular and intermolecular hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (Table 2), to form zigzag chains parallel to the b axis (Fig. 2).

(I)

Experimental

A solution of L -valine $(0.25 \mathrm{~g}, 2.13 \mathrm{mmol})$ in acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar amount of benzoyl isothiocyanate in acetone. The mixture was refluxed for about 2 h and filtered into a beaker containing some ice. The white precipitate obtained was washed with acetone-distilled water and then dried under vacuum. Crystals suitable for X-ray analysis were obtained by recrystallization from toluene (m.p. 425426 K). Analysis found: C 54.8 , H 5.8, N 9.8, O 16.9, S 10.9\%; calculated: C 55.8, H 5.7, N 10.0, O 17.1, S 11.4\%.

Figure 1
Molecular structure of (I), with 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Figure 2
Packing diagram of (I), viewed down the a axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=280.34$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=5.2223(13) \AA$
$b=11.781(3) \AA$
$c=22.738(5) \AA$
$V=1399.0(6) \AA^{3}$
$Z=4$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 947 reflections
$\theta=1.7-26.5^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.48 \times 0.44 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$T_{\min }=0.894, T_{\max }=0.941$
7838 measured reflections

1711 independent reflections 1624 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-14 \rightarrow 14$
$l=-28 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
1711 reflections
172 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0544 P)^{2}\right. \\
& \quad+0.2185 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.12 \mathrm{e}^{-3} .
$$

Table 1
Selected interatomic distances (\AA).

S1-C8	$1.675(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.382(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.223(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.321(3)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.319(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.451(3)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.199(3)$	$\mathrm{C} 9-\mathrm{C} 13$	$1.521(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.381(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.546(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.89	$2.583(3)$	136
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 3^{\mathrm{i}}$	0.86	2.18	$2.997(3)$	159
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.82	2.44	$3.251(2)$	170
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.35	$3.179(3)$	148

All H atoms were found in a difference map and were allowed to refine as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH, NH and OH , and $U_{\text {iso }}(\mathrm{H})=1.5_{\text {eq }}(\mathrm{C})$ for CH_{3}. Owing to the absence of any significant anomalous dispersion in the molecules, Friedel pairs were merged before the final refinement. The absolute configuration was known from the chiral centre of a starting material, l-valine, which remained unchanged during the synthesis of the title compound. The Flack (1983) parameter for the unmerged data was 0.03 (8) for 1711 Friedel pairs.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.

